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ABSTRACT

This report presents a new concept for the differential
correction of orbits. It is developed in detail for near-
stationary artificial satellites. For these satellites a few
(<10) observations over a short (5-15m, él% period) time
interval allows the reacquisition of the satellite an hour
later. Moreover, with only slightly more data points (total
number <15) over a slightly longer (total duration <0?5) time
interval it is capable of producing an excellent set of
orbital elements. The technique is self-starting and does not
use any of the classical initial orbit determination procedures.
It can be used by a radar or extended to include angular velocity
data. Its success appears to be based on the ability to find
a coordinate system in which the object's motion is nearly
stationary and the extensive use of analytical (instead of
numerical) procedures. Extensions of the theory to include all

first-order perturbations and to all orbital types are possible.
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I. INTRODUCTION

Professor Paul Herget, former director of the Minor
Planet Center at the University of Cincinnati, has writtenl,
"It would be a constructive achievement to dispel the myth
that 'a preliminary orbit can be computed from three observations'."
He was referring to the wide-spread belief that good orbital
elements can be computed from a minimum of data. While we
agree with his statement, we will present in this report a
differential correction procedure, for a particular class of
objects, which accurately works when the observation interval
is A 1% of the period of revolution. The ability to do this is
of importance for passive and active artificial satellités,
for solar system objects (meteors, comets, and asteroids),
and for binary star systems. Moreover, our technique is
capable of including all first-order perturbations. It may
be possible to extend the concept to all types of orbits,
not just near-stationary artificial satellites (the class
dealt with here).

How can we do this? We exploit the fact that for any
orbital motion there exists a unique coordinate system in
which the heretofore moving object is stationary. Consider,
for example, an asteroid being observed from the earth.

It's apparent motion is complicated by the earth's annual

parallax, the observer's diurnal parallax, the earth's and




the observer's motion, the minor planet's motion, and the
fact that the force's center is the Sun. To eliminate these
effects we first transform to a heliocentric coordinate

system, rotate into the asteroid's invariable plane, align

with the line of apsides, then rotate the coordinate system

with the asteroid's instantaneous angular velocity, and lastly . |

use the asteroid's instantaneous heliocentric distance as
the unit of distance. This coordinate system rotates and ;
pulsates with a period equal to the asteroid's orbital
period but the asteriod is fixed. Clearly to perform the
coordinate transformation, one needs to know the orbit, the

earth's orbit, and the observer's location on the earth.

f However, if one had an approximate set of orbital elements
for the asteroid, one could construct a coordinate system in
which the asteroid was nearly stationary. If, in addition,
one were at the origin of this coordinate system, then the i

description of the departures from stationarity would not
only be small but would also be easily modeled.

We are at the origin of any topocentric coordinate

e

system. There also happens to be a populous, growing in
number and importance, frequently maneuvered class of satellites
which are naturally nearly stationary for all earth-bound .

observers. The geocentric orbits of these satellites are

also simple: low inclination, small eccentricity, and mean
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motion = ¢t (= 1.0027379093 rev/day). There are no meaningful
perturbations acting on them over a time span of a period

( = 1 sidereal day) and the analysis will be the simplest,
analytically, for this orbital type. There are also many
practical problems having to do with searching for such
satellites by optical means2 which require essentially
instantaneous orbital element set construction. Moreover,
there are two natural topocentric coordinate systems in

which the analysis can be performed and all "small" quantities
of the theory have comparable magnitudes. For all of these
reasons the exploration of this new concept of differential
correction is most efficiently performed for this type of
orbit.

We do wish to stress two points: The development
presented here is truly a differential correction procedure.
It is not an initial orbit procedure nor a dead reckoning
technique. The other point is that the optimization problem
we have posed (and solved) is not the one that one really
wants to solve. The correct optimization problem is the
following: Let us define a function f[a(t),t] which predicts,
at time t, the location and velocity of a celestial object
from the parameters a. Let S(t,T) be the propagator for f

8O

_f_[a(T) ' T] = S(tcT)_f_[a(t)'t]I S(t,t) = 1.
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Suppose we also have knowledge, at epoch t, K(t), about the
celestial object. If a'(t) is an approximation for a(t)

then we want to minimize, with respect to a'(t), at some

specific time T,

|£la(T),T] - S(t,T)£la’(t),t]]

subject to our knowledge K(t). It is not clear that the
differential correction of orbits is an equivalent formu-
lation of this problem*. 1It's also not clear how to formulate
this problem mathematically.

Let us now turn to some other aspects of the near-
stationary artificial satellite problem and its third-order
solution for angles-only data in the topocentric equatorial
coordinate system (§II). We also include the distance and
radial velocity results, to second-order, in any topocentric
spherical coordinate system. The Appendix discusses the
angles-only problem, to second~order, in the topocentric
horizon coordinate system. Section III discusses the results
of observational tests conducted at the Experimental Test
Site of the Ground-based Electro-Optical Deep Space Surveillance
program. This network of five, computer-controlled, observatories

is replacing the Baker-Nunn photographic camera system. We

r
*That Is, a(t) = orbital element set at epoch t, f = (;),
and S(t,T) incorporates the physics of the problem.
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also include some numerical tests to ascertain the long time

(v one period) usefulness of the present development. The

last section indicates the directions one could take for

other types of orbits. This is, generally, only a first-

order development.
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II. NEAR-STATIONARY ARTIFICIAL SATELLITES
A satellite, whose motion will be model&d by our
theory for a maximum time duration SO 0, is defined

to be a near-stationary satellite if
i<0.15, e < 0.15, |n/t-1] < 0.15, and |n ~ t|T___ < 0.15. (1)

The satellite's inclination is i, its mean motion is n, and
its eccentricity is e. The numerical factor of 0.15 is a
stationary satellite's equatorial horizontal parallax, LI
This quantity is beyond our control and has been taken to be

the upper limit for a small quantity. The theory developed

below is complete through all third-order terms of this
magnitude. We shall find, as with many other orbital analysis
techniques, that the mean motion is a difficult quantity to
accurately compute. However, we shall also find that as n + 1
the practical limits on i and e rise to v 25° and ~ 0.25
respectively. Moreover, the size of the parallax implies

that the data need not even be reduced before the numerical

computations are performed*. : .

*We are not advocating incorrect, incomplete, or sloppy data

reduction. We merely point out that the largest correctiog, ¢
the astronomical refraction correction, is numerically ~ =

at a zenith distance of 60°. Similarly perturbations due %o

the earth's oblateness gr luni-solar forces are incgnsequential

at this level(e.g., Jymg is numerically less than ﬂs).
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Using standard notation to describe the Keplerian orbit
(o = argument of perigee, 2 = longitude of the ascending node,
v = true anomaly, r = geccentric distance) our starting point

is

h=r1-8- tan !(cositanu), (2a)
§ = sin"}(sinisinu), (2b)
r=a(l - ez)/(l + ecosv), (2c)
u=v+ o. (24)

Here h(H) is the geocentric (topocentric) hour angle, §(A) is
the geocentric (topocentric) declination, r(R) is the geocentric
(topocentric) distance, and Tt is the mean sidereal time on the
observer's celestial meridian. Once the appropriate approximate
expressions have been developed for the geocentric variables,

we transform to the topocentric coordinate system via

tan(H - h) = psinh/(1 - pcosh), (3a)

tan(6 - A) = gsin(y - 6§)/[1 - gcos(y - §)], (3b)

T i s o <
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rsin(é - y)ecsc(a - Y), (3c)
P = (p/r)cos¢’'secs, (34)
q = (p/r)sin¢'cscy, (3e)

tany = tan¢'cos[(H - h)/2])sec[h - (H - h)/2], (3f)

where p is the observer's geocentric distance and ¢' is the
observer's geocentric latitude.

When developing the formulas we find that the Keplerian
orbital element set is not a convenient framework to use.

Instead, we shall use

N=n-1 (4a)
A=T =TT - (M, + 0+ Q), (4b)
E, = ecosM , Eg = esinMo, (4c)
Ic = icos(w + Mo), Is = isin(w + Mo), (44)

where M, is the value of the mean anomaly at the epoch ts and

T=¢t - to. We shall further abbreviate some frequently
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occurring combinations of the parameters by

m= 1T, (5a)
E = esin(m + Mo), E' = E/T = ecos(m + Mo), (5b)
I =disin(w +m + Mo), I' =1/t = icos(w + m + Mo). (5¢)
Note dA/dt = Q so that the new parameters are constants.

The procedure is straightforward: We express the true

anomaly as a power series in e and NT, substitute into Egs. (2),

replace trigonometric functions of i by their Maclaurin
series, and then expand everything else about e = 0, i = 0,
and N = 0. The result is

h=X- (NT + 2E) - 2NTE' - SEE'/2 + II'/2 - SNT(E'? - E%)/2

2,2

+ (NT + 2E) (1'2 - 12)/2 + EN?T? + 13E3/3 - 3E(E§ + Eﬁ), (6a)

§ =1+ I'(NT +# 2E) - I(NT + 2E)2/2 + 2(NT + 2E)E'I' - 3EE'I'/2

+ 1 = x(rg * 12)/5,

r/a, = [1 - 2§/(31)1(1 - E') + (NT + E)E + 5N%/(91),

(6b)

(6c)




223 =

GMg - (6d)

We now repeat the analysis by using Egqs. (6) in Egs. (3)

and regarding p/a° as a small parameter. The result is

(B-h)secé'/(p/a_) = [1 + 2N/(31) + E' - (NT + 2E)2/2

+

+

(A - 6)/(p/ay) = = 1 + 2N/(37) + E' + 2NE'/(31) - NTE + E'

<+

2

2NE'/(31) - NTE + E'2 - E2 - N%(912) + 12/2]sin)

{(NT + 2E) + 2NTE' + S5EE'/2 - II'/2 + (NT + 2E)[2N/(37)
E'l}cosh + (p/aj) [1/2 + 2N/(31) + E')cosé'sin2i

(p/ao)(NT + 2E)cos¢'cos2) + (p/ao)zcoszo'sin3kl3, (7a)

2

2

E2 - 8%7091%) - 12/2]sin¢' + {I[1 + 2N/(31) + E']

I'(NT + 2E) }cos¢$¢'cosr - I(NT + 2E)cos¢'sini

(p/ag) {1 + 2[2N/(31) + E']}cosé'siné'cosh

2

(p/a) (1/2) (2cos?r - sin®))cos?¢' + (p/a_) [ (NT

2E)cos¢'sin) - Isin¢'lsing' + (p/ao)2[s1n2¢'/3

2

cosz¢'(sin A - 2coszx)/2]sin¢', (7b)

10
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R/a_ = 1 - [28/(31) + E'] - (p/a ) cos¢'cosh + 2NE'/(31)

+ NTE + E2 + 5N2/(31)2 + (p/a,) [(NT + 2E)cos¢'sin- Ising']
+ [(p/ao)2/2] (sin2¢' + cosz¢'sinzk), (8a)
l.t/ao = (N + ;)E + (NT + 2E);E' + (p/ao)[(N + 2%E')cos¢'sinx

TI'sing'] - 2NE/3. (8b)

We can now formulate our optimization problem. Suppose
we have N observations of topocentric hour angle and declination
{Hn,vn,tn}, n=1,2,. . .,N. We define*
2

N
s=F [ -mn)

2
o + 0, - 2%, (9)

and demand that S be a minimum with respect to N,A,EC,ES,IC, and

Is' Hn and An are expressions (7a, 7b) evaluated at time Tn'

N
T, = t, -~ <t>, <t> = nzltn/N .

1]
ct
.

(10)

The problem formulated is a non-linear least squares problem

which takes cognizance of the fact that there are only six

#The Factor of cos<h multiplying (H_ - H )2 is effectively
always unity for nea?-stationary sat@11itds.

11




independent parameters. Because of the lack of a theoretical
basis for solving such problems, we make no pretense concerning
the properties of the values of the estimates obtained for the
six parameters. Moreover, we continue our analytical bent and

3 to solve the minimization

use the method of steepest descent
problem. This is theoretically more powerful than the usual
iterative linearization technique normally employed to solve
non-linear least squares estimation problems. It also
converges more quickly and is second-order. It only remains

to supply initial guesses for the six parameters. Satisfactory
ones are

N

A=) H /N, all others
n=1

0. (11)

Note in particular that éetting Ec' Es' Ic' and Is equal to
zero does not prejudice the values for w, @, and Mb’ This

is important since there is little forcing changes in these
angles in the gradient or Hessian matrix of S.

Now let us see what we can anticipate for the numerical
results. Since the first-order terms will carry most of the
weight, we shall concentrate on them. From Egs. (6b and 7b)
both the inclination and w + M, can be well determined. From
Egqs. (6a and 7a) we see that w + Q + M, will be well determined

but that an eccentricity/mean motion swap is possible. This




follows because as T + 0 the coefficient of T in h is

- (N + z;ecosMO) and there will be no way to distinguish

which part of this quantity is being contributed by N # 0

and which part is being contributed by e # 0*. This

difficulty (especially for N) can be partially ameliorated

if the units of N are rev/day instead of rad/day**. Wwhen
computations are done using the same data with N in the different

units there can be a noticeable difference between the results.

*Wwhen T + 0 the constant part of h -+ A - 2esinM_ but ) is of
the zero'th order while e is of the first-order. Hence, the
numerical separation problem is not as severe.

**The difference of 2m accentuates small changes in N.

13




III. TESTS OF THE THEORY

A. Short Time Observational Tests

It was originally thought that this development would remove
the necessity for a traditional differential correction procedure.
Such procedures frequently have artificial singularities for e = o
or i = o. Hence, the tests described in §IIIB were performed
first. When faced with the reality of a full search2 --time-
sharing a telescope between a dozen unknown satellites and attempt-
ing to initialize data acquisition on four unknown satellites
simultaneously--it was pressed into use. Much to our surprise
it worked extremely well. In Table 1 is summarized, 1) the
total time duration of the first three observation sequences,
2) the number of observations performed in each of these observ-
ing sessions, 3) the time interval between the successive observ-
ing intervals, and 4) the ratio of the time difference between
the start of the last and first observing intervals to the sum of
the first and second observing durations. The last quantity is a
crude measure of the "gain" (e.g., lever arm) of the technique.
Quite clearly a lever arm of 10 can be achieved. In the interven-
ing time other tasks can be performed by the telescope. No
satellites were lost due to the use of the technique. 1In addition,
the actual orbital element sets converged quickly towards the true
values (within the limitations discussed above and in the next

subsection).

14




TABLE 1

Successive
Observing Time

Number of
Observations

Observing
Time

Satellite
Number

Interval

Duration

) ~O N~ O O (=2 ) o
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B. Long Time Numerical Tests

To ascertain the limits of the theory a series of long
time numerical tests were run on eleven different satellites.
For each satellite one positional measurement per half-hour
was supplied for an entire night. The data had a numerical
accuracy of ~ ﬂ5. The appropriate fits were made and the

s
theory used to predict the position at the beginning of the

next evening ('rmax = 0?8). This was compared against the
actual position at the time. The results are in Table 2 for
the a) second-order theory with N in rad/day, b) the third-
order theory with N in rad/day, and c) the third-order

theory with N in rev/day. Also we have listed the Space

Defense Center satellite identification number, the satellites'

inclinations, eccentricities, and N values. We have also

performed similar numerical experiments wherein the orbital
element set and the usual equations of Keplerian motion were
used to predict the position. These results do not significantly
differ from those obtained with the use of the appropriate
order theory series expansion.
In general, the second-order theory yields the same .
results as the third-order theory. The largest difference
is for the International Ultraviolet Explorer satellite ..
(#10637) , which clearly shows both the importance of the

higher order terms (in this instance) and that the limits

16
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for i and e in Eq. (1) can be considerably extended as N + 0.

It is also clear that as N departs from zero the accuracy
very rapidly degrades. In fact, almost all of the error is
in the hour angle [remember that the declination coordinate
has no first-order secular term, cf. Eq. (6b)].

In order to understand the relationship between the two
different third-order results, remember that if N is in
rev/day we have a multiplier of 27 exaggerating N # 0 values.
When N is large this is good (cf. satellites #4632, #83546,
#3623). When N is small but i and e large, this is bad (cf.
satellites #73505 and #10637). We conclude that a more
traditional differential correction procedure would be much
more profitably used than the one presented here over these
time spans. Of course, the initial orbital element set for

the traditional procedure would be one obtained from our

method.
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IV. EXTENSIONS

A. Why Does It Work?

To try and answer this question, whose import should be
obvious, let us compare a traditional differential correction
procedure with the one presented here. Because no one would
propose developing a sophisticated, complex algorithm (not
to mention the successful coding of it for an electronic
digital computer) for use over such short arcs, it would be
designed for longer arcs. As the length of the arc increases,
the significance of the perturbing effects of the non-
sphericity of the earth, the presence of the sun and the
moon, of air drag, of solar radiation pressure, etc., all
increase. Hence, the physics of a traditional differential
correction procedure is much more accurate and complex then
we've used. To make this investment profitable, one needs
accurate, precisely reduced data. In contradistinction, we
should be able to produce the same results with simplified
physics and with poor quality, unreduced data. One also
formulates the physics in an inertial reference frame (almost)
rather than a non-inertial reference frame. Therefore, the
coordinate transformation we have handled explicitly and
analytically, is handled implicitly and numerically. This
complexity forces, as a practical matter, the search for the

orbital elements (or geocentric initial conditions) to be an




iterative linear one with the attendant numerical computation
of the various partial derivatives one needs. We use a
second-order technique and proceed exactly (within the
constraints of the order of the theory) because we do it
analytically. Another consequence of using a more correct
physical model of the situation is the desire to simplify

the computations as much as possible. This leads to the use
of various analytical devices (e.g., averaging in first or
second order). This frequently leads to artificial analytical
singularities, typically at zero inclination, zero eccen-
tricity, or the critical inclinations (5coszi = 1l). Since
our model is pure Keplerian motion, there are no artificial
singularities due to the use of analytical devices (and
certainly not for e = 0, i = o or at the critical inclina-
tions!). Moreover, one does not expend the effort necessary
to design a sophisticated, complex differential correction
procedure for one type of orbit. This generality of the
traditional methods coupled with the vicissitudes of orbital
analysis mean that the art of orbital analysis is frequently
as important as the science of orbital analysis for them to .
work successfully. In our situation human intervention is

almost superfluous*. Finally, our analysis is performed in a

T P u e e
]

*An iterative fitting for the mean motion may help us when n
significantly departs from t. Solving the problem using

both the rad/day and rev/day and then performing a new solution
is the maximum art we can envision in our process.

20
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coordinate system that makes the motion nearly stationary.
This is not a feature of traditional procedures. These
points have been summarized in Table 3.

It would appear, over the arcs with which we are
concerned here, that only the first four lines of the Table
are in our favor. Of these, it is probably the near-stationary
aspect of the motion that is of pre-eminent significance.

By accident (for the purpose of this discussion, not for the
practical uses of near-stationary artificial satellites)
there is a natural, topocentric coordinate system in which
some real artificial satellites' motion is nearly stationary.
If it is the near-stationarity that really counts, and one
can use a minimal amount of data on any orbital type to
determine the orbital plane3, then a major change in the
shert-time differential correction of orbits is at hand.

B. A Non-Near-Stationary Orbit

As we look back at the formulas presented earlier, we
see that explicit use of n = ; has been made of twice. Once
was in computing the satellite's parallax. The other was
in the constancy of A. If we consider any low inclination,

small eccentricity orbit, with mean motion n the near-

ol
stationary constraints (1) would be modified to

i < - < ) -
izgmw,, esm, |n/no 1] < T, and [n noleax S Moo (12)

21
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TABLE 3

e

COMPARISON OF TRADITIONAL AND PRESENT DIFFERENTIAL
CORRECTION PROCEDURES

e

Traditional DC NSDC

Not near-stationary Near-stationary
i
Implicit Geometry, numerical Explicit Geometry, analytical -

Numerical computation of par- Analytical computation of partial
tial derivatives derivatives

First-order, linear, solution Second-order, non-linear, solution

technique technique
For all types of orbits For one type of orbit
Complex, accurate physics Simple, approximate physics

Can involve considerable art No art
Accurate data Unreduced data

Artificial singularities No singularities

T T

22
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where To is the (mean) equatorial horizontal parallax of a

; : : PRI TaY, | 2 1/3
satellite with mean motion n°{1r° = sin [RO(no/GMO) 1}.

Then if we redefine

N=n - n,, (13a)
A=T-ongT- (M +w+), (13b)
m = noT, (13c)
E' = E/n_, (13d)
I' = I/n_, (13e)

all of the analysis of §II and the Appendix will remain valid.
The theory is still of order ng but our earlier comments con-
cerning poor data or data reduction or perturbations may need
modification depending on the value of n,. Roughly, Jz will
become important when Jzng "~ ng, lunar perturbations will
become important when Mbwf/(n‘wg) ~ 1, and solar perturbations
will become important when Mbwi/(unﬂg) ~ 1. This extension is
not only trivial, it's not very important.

Consider, instead the general problem of making any

artificial satellite nearly stationary. The heliocentric

23
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parallax of the earth complicates all other astronomical
problems and doesn't add anything. As the problem appears
intractable anyhow we'll ignore it for now. We must, at
least, have estimates for i, Q, n, and e. It seems clear
that the true longitude [u = v + w, cf£. Eq. (2d)] is the

variable to use. From

N :
] i -
] ! cosu = cosécos(a - Q), (14a)
: % |
E | sinu = cosécosisin(a - Q) + sinisiné, (14b)
% { ;
é |
i We can write
u(i,®,o,8) = uli,Q,a(r,A,r),8(x,A,l)] 3
‘ = u{i,Q,alr(n,e),A,A],8[r(n,e),A,A]}. (15)
Let io' Qo' ng, and e, be our initial values for i, Q, n, %
and e. Then to first order in Ai = i - io' etc. E
; !
: |
ou o1 du da _du 96\ dr |
u = uo + 31 |o Al + anloAg + ('QF 3r +n~ Tr-) HIOAD .
du 3a . du 38\ ar .
+(ﬁi 5r ¥ 35 5;) 53|°Ae' (16)

Here u, is not really u(io, no, ng, eo) since the dependence

of the true anomaly on the mean motion and the eccentricity has

24




not been taken into account. Thus, with % v(no, eo),

2 du| ,i , 3u av , (3u da . 3u 38)ar
U." Vgt Sl gt A gl a8 [Sn +(aa or * 3 ar)an]| an
o o o
oV ou da _ du 38\ dr
. [35 (R %) 3—e]ler' B

Before, in §II, the three angles of the problem, w, 2, and M,

[= the mean anomaly at the epoch time, not our initial guess for
M(T)], naturally appeared in analytically convenient forms. While
w and @ (by default) still do, Mb does not*. Our numerical
experience with the near-stationary satellite problem augers

very poorly for the determination of M. Hence, either the
formulation presented here needs modification or a more clever

choice of variables is required.

*That is, we've actually written out Eq. (17) using the general
first-order expressions

Ar/ao = [ -2(1 - ecosE)/(3n) + eTsinv/(l1 - e
2)1/2

2)1/2)pn

-cosvle + OAi + OAQ + OAw+ [esinv/(1l - e
2)1/2

]AMO,

cos6°A6 = [T(1 - e sinicosu/(1 - ecosE)zlAn

+ [sinicosusinv(2 + ecosv)/(1 - ez)]Ae + cosisinulAi

+ 0AQ + sinicosulAw + [(1 - ez)l/zsinicosu/(l - ecosE)Z]AMO,
coszdoAa = [T(1 - ez)l/zcosi/(l - ecosE)Z]An

+ [cosisinv(2 + ecosv)/(1l - ez)]Ae - sinisinucosuli

+ coszsoAQ + cosilAw + [(1 - ez)l/zcosi/(l - ecosE)zlAMO.
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One might inquire as to the advisability of again

dealing directly with topocentric coordinates. Since the

topocentric coordinate system is not now the unique one
referred to in the Introduction, such an analysis would

not likely be of much benefit.

T s 4
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APPENDIX: The Horizon System

Since the satellite is nearly stationary, and the topocentric
horizon system is centered on the observer, this appears to be an
excellent coordinate system in which to work. The azimuth parallax
correction is also extremely simple. The drawback, in our view,
is the requirement of undoing the direction cosines.

In addition to geocentric hour angle and declination (h,d)
we need geocentric zenith distance, z, and azimuth A. A is
measured from the south positive westward. Finally, if ¢ is

the observer's astronomical latitude,

sinzsinA = cosdsinh, (Ala)
sinzcosA = sin¢cosdcosh - cos¢sing, (Alb)
cosz = cos¢cosScosh + sin¢siné. (Alc)
From Egs. (2)
sinzsinA = cosusin(t - Q) - cosisinucos(t - Q), (A2a)
sinzcosA = sin¢[cosucos(t - Q) + cosisinusin(t - Q)]

-cos¢sinisinu, (A2b)
cosz = cos¢[cosucos(t - Q) + cosisinusin(t - Q)]

+ sin¢sinisinu. (A2c)

We proceed as outlined in $II and find




e e A AR S SN A Al i s L e b

sin\ - (NT + 2E)cos - (N°T%/2)sin)

sinzsinA =
- 2NT(Esin) + E'cos)) - 2E®sin\ - (5EE'/2)cos)\
+ [(Ig + 12)1/21/2]cos(t - Q), (A3a)

sinzcosA = sin¢[cos) + (NT + 2E)sini] - Icos¢ - (N2T2/2)sin¢cosk
+ 2NTsin¢ (E'sin) - Ecosl) - INTcos¢ - 2EI'cosé

- sin¢{2EzcosA - (5EE'/2)sin) + [I(Ig

2,1/2
g + Is)

lsin(t - Q)} , (A3b)

SRS ——

cos¢[cosr + (NT + 2E)sin)] + Isin¢ - (N2T2/2)cos¢cosk

cosz

+ 2NTcos¢ (E'sinA - Ecos)A) + I'NTsin¢ + 2IEsin¢

gf ’ -cos¢{2E2 2)1/2

cos)A - (SEE'/2)sin) + [1(12 + 1 /21sin(t-92)} . (A3c)

; If 2, A are topocentric zenith distance and azimuth, then

tan(A - A) = PsinA/(1 - PcosA), (A4a)

tan(Z - z) = Qsin(z - I')/[1 - Qcos(z - T)], (A4b)

P = (p/r)sin(¢ - ¢')cscz, (Adc)

Q = (p/r)cos(¢ - ¢')secT,

tanl = tan(¢ - ¢')cos[(A + A)/2]sec[(A - A)/2], (A4d) i
But

¢ - ¢' = nsin2¢' + (n2/2)sind¢’' + . . . (Asa)
where

neE+E24 ... (ASb)




and £ is the flattening of the earth, 1/297.25. Therefore,

through second-order in n:,

A =24, (a6a)
: 2=z + (p/ag) sinz[l +2N/31) + E + (0/ay)cosz] . (A6b)
Hence,
sinZsinA = [1 - (D/ao)zsinzllsinzsina +
(p/ao)sinzsinAcoszll + 2N/(3;) + E + (p/ao)cosZ]. (A7a)

sinZcosA = [1 - (D/ao)zsinzzlsinzcosh +

(p/a ) sinzcosAcosz[l + 2N/(3;) + E + (p/a )cosl], (A7b) !

cosl = cosz - (p/ao)sinzz [1 + 2N/(3;) + E + 2(p/a°)cosll.(A7c)

Not only must the direction cosines be eliminated to obtain explicit

expressions for Z and A, but the problem is implicit. Hence,

we have opted for the (relative) simplicity of the equatorial

. coordinate system.
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